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ABSTRACT

Wound healing is a complex process, strictly regulated at cellular and molecular levels. The slightest disturbance of this process
can lead to the formation of hypertrophic scars (Hscars), a pathological condition of a fibrotic nature. Hscars are characterized
by their reddish appearance due to the formation/maintenance of an extensive network of blood vessels (neoangiogenesis).
However, the most striking feature of Hscars is excessive collagen deposition, sustained by myofibroblasts that remain in the
area despite healing of the injured surface. Many molecules are involved in this process, such as TGF-β1 and IL-1α, molecules
with pro-fibrotic and inflammatory activity, respectively. Once established, Hscars may only partially heal over time, resulting
in the formation of fibrous cords or contractures that can compromise organ function in its entirety, or only partially. To date,
there is no effective treatment against the formation of Hscars. The therapeutic tools available are restricted to the use of
ointments, laser treatments, or the use of compression garments. In extreme cases of disabling contractures, surgical excision
is the recommended approach. Non-invasive treatments (ointments, local compression, and so on) cause an increase in the
expression of IL-1α at the lesion site. The objective of this review work is to characterize the individual action of each cytokine
and its concomitant actions when acting in the same temporal space, in a wound healing context
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The normal wound healing process

Normal healing is a complex yet dynamic physiological re-
sponse to injuries and involves four overlapping phases: i) he-
mostasis (initial phase), ii) inflammatory phase, iii) prolifera-
tion phase and iv) remodeling phase1-4. Microvascular lesions
and leakage of blood fluid into the wound characterize injury
(Figure 1). The loss of structural vascular integrity triggers the
mechanisms of (initial) hemostasis. This process starts with
platelet activation and protein recruitment from the coagula-
tion cascade (intrinsic and extrinsic pathways) and ends with
the formation of a temporary matrix, consisting essentially of
fibrin-fibronectin5,6. The increase in the fibronectin synthesis in
this phase is an early event in healing and fibrosis. The fibronec-
tin matrix functions as an initial scaffold for the fixation of col-
lagen molecules also promoting cell adhesion and migration7.

Figure 1. Physiological response to injury. In response to injury, the
inflammatory process is initiated, and several proteins are activated such
as fibroblast growth factor (EGF), platelet-derived growth factor (PDGF),

TGF-β1, and various cytokines. TGF-β1 has an important role in the activation
of fibroblast and myofibroblast promoting collagen production for tissue
remodeling. Also, the re-epithelialization, angiogenesis, and fibroplasia

contribute to the restoration of the dermis and epidermis.

Injury and Fibrosis

Platelet activation can lead to the binding, aggregation,
and release of fibrinogen, as well as other ECM proteins, for
example, trombospondin-1 (TSP-1)5. Thrombospondin-1 (TSP-
1) is a 450 kDa matrix glycoprotein that has anti-angiogenic,
pro-apoptotic and immunomodulatory properties. It is also a
major endogenous activator of the TGF-β (transforming growth
factor-β) profibrosing factor5,8. At the bruised spot, activat-
ed fibroblasts change their phenotype turning into myofibro-
blasts, a cell type with intermediate characteristics between
fibroblasts and smooth muscle cells9,10.

They also play a central role in wound contraction11. Howev-
er, others mesenchymal cells may also originate myofibroblasts
such as circulating fibrocytes, bone marrow mesenchymal
stem cells, smooth muscle cells, cells from the epithelial-mes-
enchyme transition, etc12-15. The inflammatory phase begins
immediately and in response to tissue trauma5,6,16. This phase
is characterized by increased capillary permeability and cell
migration at the wound site6. Local production of pro-inflam-
matory cytokines (IL-1, for example) and the recruitment of
immune cells (macrophages, neutrophils and lymphocytes) are
responsible for the mechanisms for the elimination of cell de-
bris and pathogens5. Immediately after the injury (or within
a few hours), neutrophils migrate to the lesioned site in re-
sponse to chemotactic agents, such as platelet-derived growth
factor (PDGF), TGF-β1, fibroblast growth factor (FGF)17, as
well as IL-1 and various other cytokines and growth factors.
Neutrophils are the cells responsible for controlling infection
in the wound through the production and release of various
potent antimicrobial molecules, such as eicosanoids, cationic
peptides as well as proteinases (elastase, cathepsin, protein-
ase 3 and activator of plasminogen type urokinase)18.

Macrophages are responsible for the production of inflam-
matory cytokines such as TNF-α and IL-119, which, in turn, ac-
tivate the nuclear factor-NFkB pathway that stimulates the
production of MMPs20. In addition to creating/maintaining the
inflammatory microenvironment, macrophages are involved in
the production of other growth factors such as vascular en-
dothelial growth factor (VEGF), TGF-β1, basic FGF (bFGF),
PDGF and keratinocyte growth factor (KGF), responsible for
the migration and proliferation of fibroblasts and angiogene-
sis. The control of the inflammatory response is very important
because prolonged inflammation can damage healthy tissue5.
Macrophages play a crucial role in the transition from the in-
flammatory to the proliferative phases21 and their depletion
disrupts wound healing, leading to the formation of fibrotic
tissue22. The proliferative phase begins after the 3rd day and
ends between 2 to 4 weeks after the injury3. This phase is
characterized by re-epithelialization, angiogenesis, and fibro-
plasias19. The high cell density (fibroblasts and macrophages)
and the presence of a vast vascular network immersed in a
matrix rich in collagen, fibronectin and hyaluronic acid are
the most important characteristics of the granulation tissue23.
In this phase, the fibroblasts actively secrete fibronectin, a
multifunctional non-collagenous protein detected both in the
plasma soluble form and as a constituent of the insoluble frac-
tion of the ECM. It also plays an important role in the myofi-
broblast transformation process24.

Fibronectin is an essential element in this phase because not
only does it form an initial scaffold for cell migration, but it also
serves as deposition/assembly of matrix proteins. It has sever-
al sites of adhesion that allow it to bind to various molecules
such as collagen, fibrin and proteoglycans, as well as cells via
integrins25. Despite being encoded by a single gene, fibronectin
is found in different isoforms, which is the result of the alter-
native splicing of their domains EDA, EDB (for extra-domain A
or B) and the domain IIICS (type III connecting segment). The
variant form of fibronectin ED-A is a critical cofactor in the pro-
cess of phenotypic change of fibroblasts into myofibroblasts and
expressed parallel to that of ASMA (α-SMA)12, 26-28.

Over expression of α-SMA - a protein that participates in the
formation of stress fibers - is the most important phenotypic
feature of myofibroblasts12. The restoration of the epidermis
begins with the migration and proliferation process of kerati-
nocytes, stimulated by TGF-β1 and followed by neo-epitheli-
alization and restoration of the basement membrane (BM)3,6.

Angiogenesis is stimulated by different cytokines produced
by macrophages, and myofibroblasts such as TGF-β1, FGF, and
VEGF3,6,29,30. Vascularization is a process which can take place
from the 4th day to 3 weeks31. During their migration, fibro-
blasts proliferate and deposit matrix proteins, forming the
granulation tissue which is essential for normal healing6,32.
The granulation tissue replaces the temporary fibrin/fibronec-
tin matrix, to form a more stable ECM that serves as a phys-
ic-chemical scaffold for cell adhesion and proliferation31.

Fibroblasts and myofibroblasts - the predominant cells in
this phase - are responsible for the production of collagen and
other matrix molecules (fibronectin, glycosaminoglycans, hy-
aluronic acid, etc.)6,31. Tissue remodeling is the last phase of
the healing process and extends from 6 to 24 months or more,
after the initial injury. It is a period of reorganization of the
ECM and more particularly immature fibers of the type III col-
lagen and mature fibers of type I collagen33,34. At this stage,
vascular regression, disappearance of the granulation tissue
and formation of new ECM elements are observed, especially
type I collagen and fibronectin6. These events are produced
by the action of PDGF and TGF-β16. During this phase the turn-
over of the ECM is intensified through an increase in the ex-
pression of MMPs.
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Hypertrophic scars (hscars)

Tissue repair is a complex biological process. The slightest
disturbance in this process can lead to the formation of hy-
pertrophic scars (Hscars) which occur only in humans35. The
Hscars are a fibro-proliferative disorder resulting in excessive
deposition of collagen and other matrix molecules (Figure
2)4,36,37. This is a consequence which can be observed follow-
ing deep dermal lesions including burns, abrasions, surgeries,
infections, acne, folliculitis, trauma, etc4,37,38. Unfortunately,
the complete etiology of Hscars remains an unknown subject
because of the lack of validated preclinical model39.

Figure 2. Difference between normal wound healing and hypertrophic scar.
A) In normal wound healing, there is a controlled production of collagen and

matrix molecules. B) On the other hand, in the hypertrophic scar (Hscar) can be
observed an increase in the number of fibroblasts and myofibroblast resulting in
an excessive deposition of collagen which leads to the enlargement of the dermis.

Also, Hscars present higher neovascularization than normal wound healing.

A) Normal wound healing B) Hypertrophic scar

Topographically, Hscars are higher and harder than normal
skin (excessive matrix deposition), but do not protrude from
the original surface of the wound. Due to extensive neovascu-
larization, Hscars are characterized by their reddish coloring.
Generally, Hscars can cause pruritus, pain and joint contrac-
tures37,40. Histologically, Hscars are characterized by residual
but persistent inflammation41, an increase in the number of
fibroblasts / myofibroblasts organized as clusters, the per-
sistence of blood vessels, and abnormal deposition of colla-
gen. At the cellular level, fibroblasts and myofibroblasts play a
central role in Hscars4,42.

Interleukin 1 alpha (IL-1α)

Interleukin 1-alpha (IL-1a) is a pro-inflammatory cytokine
that belongs to a family of cytokines, classified as Interleukin
1 (IL-1)65-68. Currently, the IL-1 family consists of 11 members:
7 agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ), 3
antagonist receptors (IL-1Ra, IL-36Ra, IL-36) and 1 anti-inflam-
matory cytokine (IL-37) (Figure 3)65-68.

Figure 3. Representation of the interleukin-1 family and its activity. The
interleukin-1 family is subdivided into three subfamilies (IL-1, IL-18, and IL-36).

Each subfamily member shares the same AXD consensus sequence position.

IL-1α and IL-1β are the most studied members and share only
27% of homology in their amino acid sequence. Nonetheless,
their biological activities are similar69. Despite the low homol-
ogy percentage between the primary structure of IL-1α and
that of IL-1β, their molecules have similar three-dimensional
structures formed by β- strand, composed of 12 β-strands70.
Differences between IL-1α and IL-1β are more dependent on
their cell source and production mechanism than possible dif-
ferences after the binding of these cytokines to receptors. IL-
1α and IL-1β are encoded by two different genes located on
chromosome 271.

They are synthesized as a biologically inactive 37 kDa
pro-peptide by an unconventional pathway independent of the
Golgi system-endoplasmic reticulum apparatus71. IL-1α is pro-
duced an as pro-peptide and unlike IL-1β, the cleavage of the
pro-peptide (pro-IL-1α), generates two bioactive fragments:
the N-terminal fragment lL- 1α (IL-1α-NTP) and the mature
C-terminal IL-1α fragment, both having almost the same affin-
ity to their receptor72. The pro-peptide IL-1α is constitutively
expressed in cells and can be cleaved by proteases such as
calpain. The precursor and the mature form of IL-1α are bio-
logically active73-76.

Mature IL-1α is rarely secreted or detected in body fluids.
However, the IL-1α precursor can be found in cell membranes
of various cell types which may explain their cell-cell para-
crine signaling77,78. Pro-IL-1α contains a nuclear localization
signal sequence (NLS) which is conserved in the N-terminal
fragment after cleavage by calpain or other proteases72 and
the two fragments can move towards the nucleus. Nonethe-
less, the exact mechanism of this displacement remains un-
known72. However, the full-length IL-1α protein can also bind
to the receptor and trigger signaling79. IL-1 receptors form a
family of 10 proteins with tyrosine kinase activity66,68,80. De-
spite the number of receptors involved in the signaling of IL-1
family proteins, only IL-1R1, IL-1RAcP (IL-1R3) and IL-1Ra re-
ceptors are involved in IL-1α signaling (Figure 4)68,81.

Figure 4. Signaling pathway of IL-1. The binding of the IL-1 to its receptor
activates the interleukin-1 receptor kinase (IRAK) cascade which promotes the

release of the nuclear factor kB (NF-kB) and the activator protein (AP-1) to
the nucleus for transcription of several molecules involved in the inflammatory

process. Abbreviations: TIR: Toll-and IL-1r-like domain, MyD88: Factor of
differentiation 88 myeloid, TRAF6: Tumor necrosis factor-associated factor

6, TAK1: TGF-β activated protein kinase, JNK: c-Jun N-terminal kinase, ERK:
Extracellular signal-regulated kinases, IKK: Inhibitor of nuclear factor β kinase,

PGE2: Prostaglandin E2, MMPs: Matrix metalloproteinases.

The binding of IL-1α to the IL-1R1 receptor leads to the for-
mation of a complex that forms a heterodimer with the IL-
1RAcP receptor (IL-1R3), the accessory protein which serves as
co-receptor for signal transduction, downstream of the IL-1α/
IL-1R1 complex79,82. The IL-1α/IL-1R1/IL-1RAcP trimer (IL-1R3)
has highly conserved domains, called Toll- and IL-1R-like (TIR),
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responsible for the recruitment of intracellular signaling mol-
ecules such as the factor of differentiation 88 myeloid (MYD88)
and IL-1 receptor-associated protein kinase 4 (IRAK4)79,81-89.
IL-1 can be activated by other signaling pathways such as p38,
JNK and ERK79,80,82. Activation by IL-1 stimulates the synthesis
of NO, PGE2, cytokines, chemokines, MMPs and other mole-
cules involved in the inflammatory process84-86. Despite being
strongly involved in the inflammatory process and also in can-
cer, interest in studying IL-1alpha has only grown in recent
years. Little is known about the regulation of its production,
as well as its bioavailability76.

Transforming growth factor beta 1 (TGF-β1)

Transforming growth factor beta (TGF-β) is the prototype of
a superfamily protein with structural and functional similari-
ties43 comprising more than 30 members in mammals44-46. About
33 different genes have been linked to TGF-β family proteins
and these proteins47 are ubiquitously expressed in virtually all
human tissues with a very broad spectrum of functions45. The
TGF-β family proteins play a key role in several physiologi-
cal processes from the embryonic phase to adulthood45. At the
cellular level, TGF-β family proteins regulate, for instance,
proliferation, differentiation, apoptosis, cytoskeletal organi-
zation, adhesion, and cell migration. In humans, TGF-β fami-
ly proteins include TGF-β1-3, activins, inhibins, nodal, growth
and differentiation factors (GDFs), and bone morphogenetic
proteins in humans (BMP)2,46,48. TGF-β1 was the first member
of the family to be identified. Together with the β2 and β3
isoforms, they are the most studied in humans. Up to now,
TGF-β1 is the most potent pro-fibrotic cytokine known14,46. The
activity of TGF-β1 is strongly regulated at the post-transcrip-
tional level (activation)49,50. TGF-β1, like most TGF-β family
proteins, is synthesized as a broad precursor of about 390-412
amino acids, with an N-terminal domain (signal domain), one
pro-domain and the C-terminal domain43. The precursors are
cleaved inside the Golgi apparatus and the C-terminal frag-
ment (110-140 amino acids) is released51. After maturation,
TGF-β1 has a spatial conformation that allows its non-covalent
binding to the N-terminal portion of the pro-domain, called
latent-associated peptide (LAP). LAP covalently binds to an
ECM protein, named latent TGF-β-binding protein 1 (LTBP-1)43,

52, in a protein complex called latent large complex (LLC)50,

52. In case of tissue injury, the LAP is cleaved and the TGF-β is
released (Figure 5).

Figure 5. TGF-β1 synthesis. The precursor of TGF-β1 is constituted by three
domains. In the maturation process, the homodimer pro-TGF-β1 is cleaved

inside the Golgi complex and the TGF-β1 is separated from the latency-
associated peptide (LAP) chain. Afterward, the small latent TGF-β1 complex

(SLC) is formed by noncovalent bonds between LAP and TGF-β1 chains to
maintain TGF-β1 inactive. The SLC binds with the latent TGF-β1 binding

protein (LTBP-1) by disulfide bond generating the large latent TGF-β1 complex
(LLC). At last, LLC is connected to several proteases and integrins changing its

initial form and promoting the release of mature TGF-β1 form.

TGF-β is activated by two different mechanisms in which in-
tegrin plays a very important role50, 53. The canonical signaling
pathway of TGF-β activation involves two receptors with serine/
threonine kinase activity: TβRI (ALK5) and TβRII, which forms a
heteromer capable of activating Smad proteins (Figure 6)50, 54, 55.

Figure 6. Canonical and noncanonical signaling pathways of TGF-β1. In the
canonical pathway, TGF-β1 binds to the transmembrane receptor complex

(TβRI and TβRII) and it activates Smad2/3 protein by Smad anchor for receptor
activation (SARA) signaling. After, the common-mediator Smad (Co-Smad)

Smad4 is recruited and forms a complex which is transported to the nucleus
and initiates the transcription process. The noncanonical pathway is a Smad-

independent pathway in which the TGF-β1 signal is transmitted to the nucleus
for transcription by other pathways such as mitogen-activated protein kinases
(MAPK), small GTP-binding proteins, NF-κB pathway, Wnt/β-catenin pathway,

among others. Abbreviations: PI3K: Phosphoinositide 3-kinase, AKT/PKB: Protein
kinase B, JNK: c-Jun N-terminal kinase, ERK1/2: Extracellular signal-regulated
kinases, TAK1: TGF-β activated protein kinase, CDC42: Cell Division Cycle 42.

However, TGF-β can be activated differently, through anoth-
er type of receptor, called ALK1, whose effects are antagonis-
tic to those of the classical pathway, and which leads to the
degradation of the receptor56, 57. In addition to TβRI and Tβ-
RII receptors, various cell types express co-receptors such as
endoglin, betaglycan and CD109 receptor58-60. TGF-β1 can be
activated by other non-conventional pathways such as MAPK,
Rho, PI3K-AKT, p38 and JNK MAP kinases, TGF-β activating ki-
nase (TAK1) and focal adhesion kinase61, 62.

TGF-β1 participates in all stages of the healing process and
is the most potent cytokine as it stimulates the production of
type I collagen in fibroblasts6. The increase in collagen deposi-
tion and the increase in constitutive TGF-β1 signaling are the
two hallmarks of fibrosis63, 64. Increasing in the intracellular
concentration of Smads proteins in myofibroblasts also high-
lights the key role of TGF-β1 in fibrosis.

The combined action of IL-1α and TGF-β1 in the wound healing

At cellular level, TGF-β1 plays a major role in development,
differentiation, and repair processes51, 87-89. In the wound heal-
ing context, the pro-fibrotic role of TGF-β1 is corroborated
by thousands of studies that show, among other things, its
powerful pro-fibrotic action, in vivo and in vitro90, 91. TGF-β1
induces the overexpression of CTGF/CCN291, a downstream
mediator of TGF-β1, which in turn stimulates the production
of type I collagen, a major cause of fibrosis91-93. In addition,
TGF-β1 stimulates the differentiation of fibroblasts into my-
ofibroblasts in conjunction with serum response factor (SRF),
which is responsible for activating the expression of the ACTA2
gene, the gene coding for α-SMA94, 95. While the fibrotic role
of TGF-β1 is widely documented / corroborated in the liter-
ature, that of IL-1α in fibrosis remains a controversial topic
as the work is very contradictory. In studies on the epitheli-
al-mesenchyme transition, Doerner and Zuraw96 compare the
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fibrotic effects of IL-1 and TGF-β in human fibroblasts, some
studies show that IL-1 acts pro-fibrotic by stimulating collagen
synthesis97, 98. Wettlaufer, Scott99 described inhibition of IL-1
(via inhibition of caspase-1, the enzyme responsible for its re-
lease from the cell) as being able to cause dedifferentiation
of myofibroblasts into fibroblasts by a mechanism that plays
on the decrease in expression α-SMA, thus showing a possi-
ble pro-fibrotic role of IL1. However, many studies also report
an anti-fibrotic role of IL-1α. These studies were performed
using liver fibroblasts (stellate cells)100, pulmonary cells101 as
well as dermal102 and cardiac fibroblasts103. Inoue, Obayashi100

demonstrated that IL-1α is able to negatively modulate α-SMA
gene expression and increase MMP expression, leading to re-
duced fibrosis. Despite the controversy surrounding the anti-
or profibrotic action of IL-1α in patients with Hscars who have
undergone traditional therapy (compression garments, laser,
etc.), there is an important 'local' expression of IL-1α at the
level of the scar. The individual action of IL-1α and TGF-β1
during the various biological processes is well described in
the literature but there is very little work targeting the con-
comitant actions of these two cytokines. Most of this work
focuses on the effects of TGF-β1 versus IL-1 beta (and not the
alpha form). Regarding studies involving IL-1α, the main goal
of the work was to find a protein that could link the signaling
pathways of IL-1α and TGF-β1. This protein appears to be the
activating protein kinase 1 of TGF-β (TAK1/ MAP3K7). Initially
described as an intermediate of the TGF-β1 and BMP signal-
ing pathway, TAK1 also activates transcription factors of the
NFkB pathway. However, the role of TAK1 in TGF-β1 signaling
is controversial. For example, Sowa, Kaji104 have demonstrated
that TAK1 can activate the p38 protein and modulate a TGF-β1
response by a Smad-independent pathway. However, the work
of Stopa et al.105 show that IL-1α and IL-1β are able to inhibit
the expression of CTGF/CCN2, a potent stimulator of collagen
synthesis that acts downstream of the TGF-β pathway, through
increased of gene expression of the Smad7 protein, a negative
regulator of the TGF-β1 canonical pathway106, 107. For this IL-1α
phosphorylates Smad3 atypically108. The concomitant action of
IL-1α and TGF-β1 during healing was mainly explored during
the initial phases of healing (inflammatory phase) and not in
the remodeling phase. Mia, Boersema101 demonstrated, for ex-
ample, that IL-1β is able to counter the effects of TGF-β1 in
dermal and pulmonary fibroblasts via the positive modulation
of the expression of certain MMPs (MMP-1, -2, 9 and 14) and the
stabilization of the activation of the ACTA2 gene (α-SMA). The
antagonistic effects between IL-1α and TGF-β1 and the impor-
tance of the balance (ratio) between these two cytokines have
been described by Shephard, Martin et al109. In human dermal
fibroblasts they have demonstrated that IL-1α opposes the ef-
fects of TGF-β1 by decreasing transcription of CTGF/CCN2, via
Smad2102. Van Nieuwenhoven, Hemmings103 reported that car-
diac fibroblasts co-stimulated with IL-1α and TGF-β1, showed
a decrease in α-SMA expression and TGF-β1 induced contrac-
tile capacity of cells. Understanding the mechanisms involved
in the cross-talk between the IL-1α and signaling pathways in
the healing context can provide us with valuable information
and may open the way for new therapies.
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