

Brazilian Journal of Global Health Revista Brasileira de Saúde Global

Synanthropic mammals in transmission cycle of Trypanosoma cruzi in Yucatán, Mexico

Maria A. Cab-Romero¹, Andrea P. Costa², Jaciara O. J. Costa³ Ingridi B. O. Manhães⁴, Ryan E. Silva³, Hugo A Ruiz-Piña¹, Enrique A. Reyes-Novelo¹, Francisco J. Escobedo-Ortegon¹, Renata Tonhosolo⁵, Arlei Marcili^{3,4,*}

¹Regional Research Center Dr. Hideyo Noguchi, Mérida, Yucatán, México. ²Department of Pathology, State University of Maranhão, São Luís, Maranhão, Brazil. ³Department of Veterinary Medicine and Animal Health, University of São Paulo, São Paulo, Brazil. ⁴Program of Medicine and Animal Welfare and One Health - Santo Amaro University, São Paulo, SP, Brazil. ⁵Medical College - Santo Amaro University, São Paulo, SP, Brazil.

ABSTRACT

OBJECTIVE

Trypanosoma cruzi comprises highly heterogeneus populations classified within six Discrete Typing Unit (DTU's) named Tc-I to Tc-VI ans TcBat. Evolutionary history of *T. cruzi* has a very strong association with their mammal hosts and some phylogenetic and ecolobiologically studies suggest that ecotopes, hosts and vectors are factors that determine the different lineages of *T. cruzi*.

METHODS

Herein we characterized *T. cruzi* isolates from synanthropic individuals of *Didelphis virginiana* and *Rattus rattus* captured in the village of Molas, Yucatan.

RESULTS

Forty households were selected and traps were placed in the yard during January to May of 2014. Sixty six opossum (*Didelphis virginiana*) and twenty five rats (*Rattus rattus*) were captured and 13 were diagnosed as *T. cruzi* infected by microhematocrit and blood culture. Ten isolates of *T. cruzi* were obtained for phylogenetic analysis with SSU rDNA, gGAPDH and Cytochrome B genes to describe the relationships between them and classify them into the different DTU's.

CONCLUSIONS

This study demonstrated the participation of synanthropic animals *D. virginiana* and *R. rattus* as a reservoirs of *T. cruzi* in Yucatan_Mexico and the different isolates of the parasite belonged to Tc-I. The proximity of these species to the domestic environment favor the contact of the trypanosome with the human population in domestic environment.

DESCRIPTORS

Opossum. Rats. DTU's. Phylogeny. Chagas Disease.

Corresponding author:

Arlei Marcili

Universidade de Santo Amaro (UNISA). Rua Prof. Enéas de Siqueira Neto, 340 - Jardim das Imbuias, São Paulo - SP. E-mail: <u>amarcili@prof.unisa.br</u> /ORCID iD: https://orcid.org/0000-0002-0478-6771 **Copyright:** This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original author and source are credited.

DOI: https://doi.org/10.56242/globalhealth;2020;1;1;21-28

INTRODUCTION

The zoonotic disease with the name of American Trypanosomiasis or Chagas' disease whose distribution extends with a distribution from the south of the United States to South America. It is currently considered a parasitic pathology that causes havoc in public health and the economy in Latin America¹⁻³.

Phylogenetic analysis of *T. cruzi* based on a series of nuclear and mitochondrial markers indicate that the genus *Trypanosoma* is *monophyletic*^{4,5}. The monophyly hypothesis suggests that an ancestral parasite originated the trypanosomes of mammals in Africa, America and Australia. The first forms of *T. cruzi* were associated with the marsupials of the Didelphidae family 80 million years ago^{6, 7}. With the passing of time, *T. cruzi* adapted to different mammals and began the hematophagous habits of the vectors⁸ to develop the digenetic cycle in which different selective pressures acted and gave rise to an extensive variety of populations of this parasite⁹.

For years, studies of electrophoretic variants of isoenzymes^{10, 11} and other molecular techniques were carried out to finally identify six discrete typing units (DTU) of genetically related *T. cruzi*, named as Tc- I to Tc-VI and TcBat which are present in different ecotopes that determine the evolutionary ecology of the parasite in a region and associates biological characters with the clinical manifestations of the disease¹²⁻¹⁴.

All DTUs are considered infective for humans, some studies suggest that Tc-II, Tc-III and Tc-IV are associated with domestic environments and with patients with chronic manifestations of the disease, Tc-III and Tc-IV with environments wild and Tc-I with both environments¹⁴⁻¹⁶.

In Mexico, studies have been carried out since 1998 on various techniques on the molecular and biological characterization of *T. cruzi* obtained from triatomines, host mammals and human cases, which reveal the presence of *T. cruzi* group I mainly in southeastern Mexico and *T. cruzi* II in the center of this country with variations in biological behavior in murine models at the level of parasitaemia, mortality and tropism¹⁷⁻²².

However, studies in this regard are very scarce but have revealed that populations of *T. cruzi* circulate among mammalian hosts, vectors and ecotopes in a selective manner depending on the association (host-parasite). From this, the present study was conducted in the town of Molas, Yucatan, where the closeness of wild species, domestic animals and triatomines may present a risk for the transmission of *T. cruzi* to humans.

Here in we phylogenetically characterized the isolates of *T*. *cruzi* that circulate in the synanthropic population of *D*. *virginiana* and *R*. *rattus* from the rural town of Molas, Yucatán, Mexico.

METHODS

Study area and mammals caught

The study was conducted in the town of Molas (20 ° 48'00''N and 89 ° 38'00''W), located 16 km south of the city of Mérida, Yucatán, Mexico. This town has a population of 2,014 inhabitants and is within the limits of the Cuxtal Ecological Reserve. It has a subhumid warm climate with summer rains with an average annual temperature of over 26 °C. Surrounding the conurban zone, fragments of secondary vegetation predominate in different stages of succession composed of native species of low deciduous forest (Ceiba aesculifolia Bombaceae, Bursera Simaruba Burceraceae and Talisia Olivaeformis Sapindaceae, among others) and small fragments with characteristics of this jungle whose height varies from 6 to 15 m.

Sampling was carried out in a total of 40 dwellings (5m to houses) in Molas municipality (Figure 1) with 20 Tomahawk Inc.® traps, 20 Sherman® traps were placed in each yard using seasonal fruit, and oatmeal with vanilla as baits, respectively,

for three consecutive days of each month in the period January to May 2014. The traps were marked at the time of their placement with a label at the top with the following information: date, number of individual captured and the assigned home number.

Figure 1. Geographic location of the town of Molas, Yucatan, Mexico.

Animals were sedated with 1-5 mg/kg of Ketamine and made aseptic with solution of 70% ethanol before collecting samples. Two aliquots of blood were collected by cardiac puncture, a part of the blood was transferred to sterile tubes containing alcohol to PCR analysis and the other to blood culture.

For microhaematocrit test, two heparinized capillary tubes werefilled with 50 L of cord blood each one at delivery; tubes were centrifuged at 3000g for 1 min and after centrifugation. The buffy coat was placed in a slide and covered with a coverslip, and the complete coverslip area was analyzed under the light.

All procedures for handling animals were performed according to the Ethics Committee on Animal Use of the Faculty of Veterinary Medicine, University of São Paulo, Brazil

Trypanosome isolation

To detect trypanosomatid parasites, blood samples from wild obtained through were inoculated into Vacutainer tubes containing a biphasic medium consisting of 15% sheep red blood cells as the solid phase (blood agar base), overlain by liquid liver infusion tryptose (LIT) medium supplemented with 20% fetal bovine serum²³. The culture was incubated at 28°C and grown in LIT medium for DNA preparation, and the isolates were cryopreserved in liquid nitrogen in the Brazilian Trypanosomatid Collection (Coleção Brasileira de Tripanossomatídeos, CBT), in the Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, Brazil. Blood samples were fixed in ethanol (primary samples) for molecular detection.

Extraction and amplification of DNA from blood and culture

The extraction of DNA for culture samples was extracted from the trypanosome cultures using the phenol-chloroform method. The extraction of DNA from blood was performed according to the protocol established by Purelink kit (Thermo Fisher Scientific Inc, 2012, USA). The DNA samples were subjected to the conventional polymerase chain reaction (PCR) for trypanosomatids barcoding on a fragment of ~ 900 bp of the V7V8 SSU rDNA^{12, 23}, gGAPDH (~600bp)²⁴ and cytochrome B (~400pb)¹². PCR products of the expected size were purified and sequenced in an automated sequencer (ABI Prism 310, Applied Biosystems, Foster City, CA).

Phylogenetic analysis

The sequences obtained were aligned with sequences previously determined for other trypanosomatid species available in GenBank (Table 1) using ClustalX²⁵ and were adjusted manually using GeneDoc²⁶. The barcoding sequences were used to construct a phylogenetic tree using maximum parsimony, as implemented in PAUP version 4.0b10²⁷ with 500 bootstrap replicates. Bayesian analysis was performed using MrBayes v3.1.2²⁸ with 1,000,000 replicates. The first 25% of the trees represented burn-in, and the remaining trees were used to calculate Bayesian posterior probability.

RESULTS

A total of 91 mammals, between *Rattus novergicus* (n=25) and *Didelphis virginiana* (n=66) were sampled in the area and examined. Wild mammals overall rate of infection were evaluated by microhematocrit test and blood culture and 11.83%

(13/91) were positive by and 9.1% (10/91) of positive cultures was established.

The sequences of SSU rDNA, gGAPDH and cytochrome B (CytB) genes were obtained for ten isolates and compared with sequences retrieved from GenBank and congruent topologies were obtained by maximum parsimony and Bayesian analysis.

The isolates were grouped as *T. cruzi* (100% of boostrap/1.0 a posteriori probability). All isolates of *T. cruzi* obtained are belonging to TCI Group (100% boostrap/ 100% a posteriori probability) (Fig. 2A;2B). Intraspecific analysis were performed by Cyt B gene (Fig. 2C) when compared to the GenBank reference strains from Mexican isolates from different states and hosts (*Triatoma dimidiata, Homo sapiens, Dipetalogaster maxim, Triatoma pallidipennis*)²⁹ they did not show differences between them (100%).

 Table 1: Trypanosome isolates, host and geographic origin and sequences of SSU rDNA, gGAPDH and cytochrome B used for phylogenetic analysis

Trypanosomatids species	Isolate code	Host	Geographic oringin		Acession Number ^a		
					SSU rDNA	gGAPDH	CytB
Trypanosoma rangeli	TCC643	Platyrrhinus lineatus	Miranda	MS	EU867803		
T. dionisii	CBT58	Sturnira lillium	Pinheiros	ES	KF557744	KF557735	
	CBT59	Lophostoma braziliense	Pinheiros	ES	KF557745	KF577736	
	PJ	Pipistrellus pipistrellus	Belgium		AJ009152		
	P3	Pipistrellus pipistrellus	England		AJ009151		
	TCC211	Eptesicus brasiliensis	São Paulo	SP		AJ620271	
	TCC289	Eptesicus brasiliensis	São Paulo	SP	FJ001651		
	TCC495	Carollia perspicillata	Porto Velho	RO		GQ140363	
	TCC633	Sturnira lillium	Miranda	MS	EU867812		
T. erneyi	TCC1293	Tadarida sp.	Mozambique		JN040987	JN040964	
	TCC1294	Tadarida sp.	Mozambique		JN040988		
	TCC1932	Mops condylurus	Mozambique		JN040990		
	TCC1934	Mops condylurus	Mozambique		JN040991	JN040968	
T. cruzi marinkellei	CBT3	Phyllostomus hastatus	Confresa	MT	JX845151		
	CBT7	Phyllostomus hastatus	Confresa	MT	JX845154		
	CBT8	Carollia perspicillata	Confresa	MT	JX845155		
	CBT10	Trachops cirrhosus	Poconé	MT	JX845157		
	CBT67	Myotis nigricans	Pinheiros	ES		KF557743	
	B7	Phyllostomus discolor	São Felipe	BA	AJ009150		
	TCC420	Chrotopterus auritus	Barcelos	AM	FJ001636		
	TCC501	Carollia perspicillata	Porto Velho	AM		GQ140361	
	TCC708	Chrotopterus auritus	Barcelos	AM	FJ001648		
	CBT95	Phyllostomus sp.	Riachão	MA	KP197159	KP197169	
	CB199	Phyllostomus hastatus	Riachão	MA	KP197160	KP19/1/0	
T. cruzi	Y	Homo sapiens	São Paulo	SP	AF301912	GQ140353	
	CLBR	Triatoma infestans	São Paulo	SP	AF245383		
	Peru	Homo sapiens	Peru		X53917		
	JJ	Homo sapiens	Barcelos	AM	AY491761	GQ140355	
	TCC463	Cebus albifrons	Barcelos	AM	EU755224		
	NRcl3	Homo sapiens	Chile		AF228685	GQ140357	
	TCC186	Homo sapiens	Bolivia		FJ001630		
	TCC862	Euphractus sexcinctus		RN	FJ183397		
	TCC863	Euphractus sexcinctus		RN	FJ549376		
	MT3663	Panstrongylus geniculatus		AM	AF288660	GQ140355	
	TCC129	Proechimys iherinai	São Paulo	SP	FJ555652		
	TCC793	Myotis levis	São Paulo	SP	FJ001634	GQ140358	

TCC480	Noctilio albiventris	Miranda	MS	EU867804		
TCC947	Mvotis nigricans	São Paulo	SP	FJ001626		
TCC949	Mvotis nigricans	São Paulo	SP	FJ001627		
TCC1122	Mvotis levis	São Paulo	SP		GQ140359	
G	, Didelphis marsupialis		AM	AF239981	GQ140351	
TCC642	Carollia perspicillata	Montenearo	RO			
TCC711	Didelphis marsupialis	Barcelos	AM	EU755229		
TCC1456	Monodelphis	Pará	PA	FJ555623		
	brevicaudata					
Anitall	Triatoma dimidiata	Campeche	MX			JX431272
Cam6	Triatoma dimidiata	Campeche	MX			JX431273
Cristy	Homo sapiens	San Luiz Potosi	MX			JX431274
Mich1	Triatoma dimidiata	Michoacan	MX			JX431275
Ninoa	Homo sapiens	Oaxaca	MX			JX431276
PLI	Dipetalogaster máxima	Baja California Sur	MX			JX431277
QROI	Triatoma Barberi	Queretaro	MX			JX431278
TQI	Triatoma pallidipenis	Morelos	MX			JX431279
XAL1	Triatoma dimidiata	Veracruz	MX			JX431280
CBT169	Rattus rattus	Molás	MX	MK652762	MK681431	MK681141
CBT170	Rattus rattus	Molás	MX	MK652763	MK681432	MK681142
CBT171	Rattus rattus	Molás	MX	MK652764	MK681433	MK681143
CBT172	Didelphis virginiana	Molás	MX	MK652765	MK681434	MK681143
CBT173	Didelphis virginiana	Molás	MX	MK652766	MK681435	MK681144
CBT183	Didelphis virginiana	Molás	MX	MK652767	MK681436	MK681145
CBT184	Didelphis virginiana	Molás	MX	MK652768	MK681137	MK681146
CBT185	Didelphis virginiana	Molás	MX	MK652769	MK681138	MK681147
CBT186	Didelphis virginiana	Molás	MX	MK652770	MK681139	MK681148
CBT187	Didelphis virginiana	Molás	MX	MK652671	MK681140	MK681149

^a Sequences determined in this study and deposited in GenBank are underlined and bold.Mexico (MX) and brazilian states: Espirito Santo (ES); São Paulo (SP); Rondônia (RO); Mato Grosso (MT); Bahia (BA); Mato Grosso do Sul (MS); Amazonas (AM); Rio Grande do Norte (RN); Maranhão (MA).

A) SSU rDNA

B) gGAPDH

Figure 2. Phylogenetic trees inferred by maximum parsimony and Bayesian inference. A. SSU rDNA gene with 48 sequences of trypannosomatids from GenBank with T. rangeli as an external group. The numbers of the nodes are the support values for the main branches (Boostrap/posterior probability); B. gGAPDH gene with 20 trypanosomatid sequences from GenBank with T. dionisii as an external group. The numbers of the nodes are the support values for the main branches (Boostrap/posterior probability); C. Cyt B gene with 19 GenBank trypanosomatid sequences. The numbers of the nodes are the support values for the main branches (Boostrap/posterior probability). The isolates of the study were underlined.

Ninoa

100/

Anita

Cam 6

Cristy

Mich

<u>CBT 187</u>

tqi

qroi

pli

DISCUSSION

The occurrence of *T. cruzi* infection in synanthropic mammals was 11,83% by microhematocrit and blood. The results of the our study show similarities to others studies carried in *Didelphis* ³⁰⁻³², demonstrating the importance of opossums of the genus *Didelphis*, several geographic zones in Yucatan, as reservoir of *T. cruzi*.

Phylogenetic analyzes of *T. cruzi* from the *D. virginiana* and *R. rattus* isolates that were obtained from Molas were grouped in Tc-I, the most common DTU in Mexico. The positivity of *T. cruzi* in sinantropic mammals from Molas was 11,83%. The results of the our study show similarities with past and recent studies³⁰⁻³².

However the results on the genotype of *T. cruzi* that is present in the synanthropic population of *D. virginiana* and and *R. rattus* from the town of Molas, is concordant with the reports made since 1992 of the Yucatecan strains of both vectors and wild animals of humans^{33, 34} as well as other regions of Mexico^{34, 17, 19, 35, 36} reporting that lineage 1 (old classification) is circulating in different cycles of transmission of this parasite.

Bosseno and collaborators¹⁹ obtained 56 isolates (T. longipennis, T. pallidipennis, Humans, T. barberi, D. virginiana, T. phyllostoma, T. picturata, D. marsupialis and Philander opossum) from nine states of the Mexican Republic (Colima, Guanajuato, Jalisco, Morelos, Nayarit, Oaxaca, Veracruz, Yucatan and Zacatecas) according to the analyzes that were reported, all the isolates corresponded to lineage I except 2.4% of these, because they were grouped with lineage II; that corresponded to the isolates located in Veracruz of D. virginiana and Philander opossum. In 2012, the first report was made in Mexico detecting different DTU circulating in the same transmission cycles, this study was carried out by capturing 300 triatomines (T. dimidiata) in homes and peridomiciles of the localities of Orizaba and Cordova in Veracruz, finding a natural T. cruzi infection of 13.7% (41/300) and the following UDTs were detected by several molecular methods: Tc-I: 27% (9/33), Tc-II: 12% (4/33)), Tc-III: 15% (5/33), Tc-IV: 18% (6/33) and Tc-V: 27% (9/33), indicating a clear diversity with high frequencies of the different DTUs of T. cruzi despite the limited number of samples²².

Despite the different studies that show different DTU distributed in Mexico, the predominance of Tc-I in our study may be due to the fact that it has been shown that vectors can act as biological filters, selecting the populations of the parasite to be transmitted through specific mechanisms such as intestinal immune factors, digestive enzymes and lytic factors among others^{37, 38} in this way, determines the etiology of *T. cruzi* strains involved in the transmission cycle³⁹.

On the other hand, it must be mentioned that our results are compatible with the studies of Roelling and collaboratos^{40,}⁴¹ which demonstrated the genotype-host association in the southeastern United States with two species of marsupials through experimental infection (*Monodelphis domestica* and *D. virginiana*), where the association of *Didelphis* with DTU I, suggesting that the infection dynamics of the different strains of *T. cruzi* can vary considerably in different wildlife hosts.

In the state of Yucatan, only 42 human cases have been documented with chagasic cardiomyopathy of 1970-1985^{43, 44}, a predominant characteristic of the DTU I. Recent studies have shown In Yucatan, seroprevalence varies between 1% in urban areas and up to 4% in rural localities^{45, 46}. In this study, it is possible that the genetic flow of the populations of *T. cruzi* is the same that *D. virginiana* and *R. rattus* introduces from the sylvatic ecotope to the domestic one due to its synanthropic behavior to establish shelters inside and outside the human dwellings, forcing the vectors (*T. dimidiata*) to the domiciliary adaptation, where they find shelter and sufficient food of both human blood and domestic animals, as a consequence, the human population could be exposed to *T. cruzi* and develop Chagas Disease.

The transmission cycles of *T. cruzi* in this area are mainly linked by synanthropic populations and yours movement patterns. In USA, *D. virginiana* features family behavior and have constant movement within their territory⁴⁷⁻⁵⁰. In the sylvatic cycles of transmission of *Trypanosoma cruzi* are maintained by terrestrial and triatomine wild mammals¹². In Brazil, domestic populations of *R. rattus* are responsible for maintaining intradomiciliar colonies of Triatoma species¹². *D. virginiana* is a wild species that has synanthropic habits for the search of food, on the other hand, *R. rattus* is a totally synanthropic species and always associated with human occupations. The proximity of these species to the domestic environment favor the contact of the trypanosome with the human population and the domicilation of triatomine species to the domestic environment.

CONCLUSION

This study demonstrates the participation of synanthropic mammals of high population density and actively participating in the cycle of transmission of Chagas disease in Molas municipality, Mérida, Yucatán, Mexico

ACKNOWLEDGMENTS

We would like to thank the support provided by CONACYT. Promep 103.5/13/5270 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

REFERENCES

- 1. Chagas C. Nova tripanozomiaze humana: Estudos sobre a morfologia e o ciclo evolutivo do *Schizotrypanum cruzi* n. gen., n. sp., ajente etiolojico de nova entidade morbida do homen. Mem. Inst. Osw. Cruz. 1909; 1: 159-218.
- 2. WHO- World Health Organization. Control of Chagas disease. Technical Report series. Geneva. 2002; 66.
- 3. Muñoz-Saravia S G, Sucre SBH, Berlin CU, Haberland A, Berlin CU, Wallukat G. Chronic Chagas' heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart. Fail. Rev. 2012; 1: 45-64.
- Lake JA, De La Cruz VF, Ferreira PCG, Morel C, Simpson L. Evolution of parasitism: Kinetoplastid protozoan history reconstructed from mitochondrial rRNA gene sequences. Proc. Nat. Acad. Sci. USA. 1988; 85: 4779-4783.
- 5. Stevens J. Rambaut, A. Evolutionary rate differences in trypanosomes. Infect. Genet. Evol. 2001; 1: 143-150.
- Briones MR, Souto RP, Stolf BS, Zingales B. The evolution of two *Trypanosoma cruzi* subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol. Biochem. Parasitol. 1999; 104:19-232.
- 7. Buscaglia CA, Di Noia JM. *Trypanosoma cruzi* clonal diversity and the epidemiology of Chagas' disease. Microbes. Infect. 2013; 5: 419-427.
- Calderón-Arguedas O, Chinchilla M, García F, Vargas M. Variaciones biológicas de *Trypanosoma cruzi* (Kinetoplastida: Trypanosomatidae) asociadas con la ingestión de diferentes tipos de sangre por el vector *Triatoma dimidiata* (Hemiptera: Reduviidae). Parasitol. Latinoam. 2003; 58: 3-10.

- 9. Schofield CJ, Galvão C. Classification, evolution and species groups within the *Triatominae*. Acta Trop. 2009; 100: 88-100.
- Jansen MA, Rodrigues AL. 2010. Domestic and Wild Mammalian Reservoirs. En: J. Telleria., M. Tibayrenc. (Eds). American Trypanosomiasis Chagas Disease One Hundred Years of Research. USA: Elsevier. 2010; 251-278.
- 11. Miles MA, Toye PJ, Oswald SC, Godfrey DG. The identifica- tion by isoenzyme patterns of two distinct strain-groups of *Trypanosoma cruzi*, circulating independently in a rural area of Brazil. Trans. R. Soc. Trop. Med. Hyg. 1977; 71: 217-225.
- 12. Miles MA, Souza A, Povoa M, Shaw JJ, Lainson R., Toye PJ. Isozymic heterogeneity of *Trypanosoma cruzi* in the first autochthonous patients with Chagas' disease in Amazonian Brazil. Nature. 1978; 272: 819-821.
- Marcili A, Lima L, Cavazzana Jr M, Junqueira ACV, Veludo HH, Maia da Silva F, et al. A new genotype of *Trypanosoma cruzi* associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochome band Histone H2B genes and genotyping based on ITS 1 rDNA. Parasitology. 2009a; 136: 641-655.
- 14. Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, et al. A new consensus for *Trypanosoma cruzi* intraspecific nomen¬clature: second revision meeting recommends Tcl to TcVI. Mem. Instit. Oswaldo Cruz. 2009; 104: 1051-1054.
- Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, et al. The revised *Trypanosoma cruzi* subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012; 12: 240-253.
- Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleela R, Fitzpatrick S, et al. The molecular epidemiology and phylogeography of *Trypanosoma cruzi* and parallel research on *Leishmania*: looking back and to the future. Parasitology. 2009; 136: 1509-1528.
- Yeo M, Acosta N, Llewellyn M, Sánchez H, Adamson S, Miles GA et al. Origins of Chagas disease: *Didelphis* species are natural hosts of *Trypanosoma cruzi* I and armadillos hosts of *Trypanosoma cruzi* II, including hybrids. Int J Parasitol. 2005; 35: 225-233.
- Espinoza B, Vera-Cruz JM, González H, Ortega E, Hernández R. Genotype and virulence correlation within Mexican stocks of *Trypanosoma cruzi* isolated from patients. Act. Tropica. 1998; 70: 63-72.
- Barrera-Pérez MA, Rodríguez ME, Guzmán-Marin E, Zavala-Velázquez J, Dumonteil E. Biological behaviour of three strains of *Trypanosoma cruzi* from Yucatan, México. Revista Biomedica. 2001; 12: 224-230.
- 20. Bosseno M, Barnabé C, Magallón E, Lozano F. Predominace of *Trypanosoma cruzi* I lineage in Mexico. J. Clin. Microbiol. 2002; 40: 627-632.
- Bosseno M, Barnabé C, Sierra MJ, Kengne P, Guerrero S, Lozano F. Wild ecotopes and food habitats of *Triatoma longipennis* infected by Trypanosoma cruzi lineages I and II in Mexico. Am. J. Trop. Med. Hyg. 2009; 80: 988-991.
- 22. Gómez-Hernandez C, Rezende-Oliveira K, Nogueira GA, Rocha L, Borges H, Martinez-Ibarra JA, et al. Molecular characterization of *Trypanosoma cruzi* Mexican strains and their behavior in the mouse experimental model. Ver. Soc. Bras. Med. Trop.2011; 44: 684-690.
- Ramos-Ligonio A, Torres-Montero J, López-Monteon A, Dumonteil E. Extensive diversity of *Trypanosoma cruzi* discrete typing units circulating in *Triatoma dimidiata* from central Veracruz, Mexico. Infect. Genet. Evol. 2012; 12: 1341-1343.
- 24. Marcili A, Costa AP, Soares HS, Acosta IC, Lima JTR, Min-

ervino AHH, et al. First Report of *Trypanosoma* sp. in Spectacled Caiman (*Caiman crocodilus*): Morphological and Phylogenetic Relationships. Parasitol. 2013: 1-7.

- Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC: Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol. 2004; 34:1393-404.
- Thompson JD, Gibson TJ. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 1997; 25: 4876-4882.
- 27. Nicholas KB, Nicholas Jr HB, Deerfield DW: GeneDoc: analysis and visualization of genetic variation. Embnew News. 1997; 4:14.
- Swofford DL: PAUP: Phylogenetic analysis using parsimony. Beta Version 4.0b10. Sunderland, Massachusetts, USA: Sinauer and Associates. 2002.
- Ronquist F, Huuelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19: 1572-1574.
- Zumaya-Estrada FA, Messenger LA, Lopez-Ordonez T, Lewis MD, Flores-Lopez CA, Martínez-Ibarra AJ, et al. North American import? Charting the origins of an enigmatic *Trypanosoma cruzi* domestic genotype. Parasit. Vectors. 2012; 5: 226.
- Ruiz-Piña H, Cruz-Reyes A. The opossum *Didelphis virginiana* as a synanthropic reservoir of *Trypanosoma cruzi* in Dzildzilché, Yucatán, México. Mem. Inst. Osw. Cruz. 2002; 5: 613-620.
- 32. Parada-López J, Hernández-Betancourt SF, Ruiz-Piña HA, Escobedo-Ortegón FJ, Medina-Peralta S, Panti-May JA. *Trypanosoma cruzi* Infection in *Didelphis virginiana* in Relation to Population Parameters and Variables Associated with Presence in Rural Community Dwellings in Yucatan, Mexico. EcoHealth. 2013; 10: 31-35.
- 33. Tamy-Segovia P, Blum-Dominguez SC, Núñez-Oreza LA, Martinez-Hernandez F, Gómez-Solano MI, Maldonado-Velasquez MG, Retana-Guiascón OG. Presence of Virginia opossum (Didelphis virginiana) and Pic (Triatoma dimidiata) infected with *Trypanosoma cruzi* in urban areas: preliminary evaluation in the city of Campeche, Mexico. Austral J. Vet. Sci. 2017; 49: 35-38.
- Zavala-Castro JE, Velasco-Castrejon O, Hernandez R. Molecular characterization of Mexican stocks of Trypanosoma cruzi using total DNA. Am. J. Trop. Med. Hyg. 1992; 47: 201-209.
- López-Olmos V, Pérez-Nasser N, Pinero D, Ortega E, Hernandez R, Espinoza B. Biological characterization and genetic diversity of Mexican isolates of *Trypanosoma cruzi*. Acta. Trop. 1998; 69: 239-254.
- Ruiz- Sánchez R., De León P, Matta V, Reyes P, Monteón V. *Trypanosoma cruzi* isolates from Mexican and Guatemalan acute and chronic chagasic cardiopathy patients belong to *Trypanosoma cruzi* I. Mem. Inst. Oswaldo. Cruz. 2005; 100: 281-83.
- 37. Sánchez -Guillén MC, Bernabé C, Tibayrenc M, Zavala-Castro J, Totolhua JL, Méndez-López J, et al. *Trypanosoma cruzi* strains isolated from human, vector, and animal reservoir in the same endemic region in Mexico and typed as *T. cruzi* I, discrete unit 1 exhibit considerable biological diversity. Mem. Inst. Oswaldo Cruz. 2006; 101: 585-590.
- García E, Azambuja P. Development and interactions of *Trypanosoma cruzi* within the insect vector. Parasitology Today. 1991; 9:240-244.
- 39. Cuervo P, Cupolillo E, Segura I, Saravia N, Fernandes O. Genetic diversity of Colombian sylvatic *Trypanosoma cruzi* isolates revealed by the ribosomal DNA. Mem. Inst. Osw. Cruz. 2002; 97:877-880.

- Patterson SJ, Guhl F. Domestic and Wild Mammalian Reservoirs. En: J. Telleria., M. Tibayrenc. (Eds). American Trypanosomiasis Chagas Disease One Hundred Years of Research. USA: Elsevier. 2010; p. 94.
- Roellig DM, Ellis AE, Yabsley MJ. . Genetically different isolates of *Trypanosoma cruzi* elicit different infection dynamics in raccoons (*Procyon lotor*) and Virginia opossums (*Didelphis virginiana*). Int. J. Parasitol. 2009a; 39: 1603-1610.
- 42. Roellig DM, McMillan K, Ellis AE, Vandeberg JL, Champagne DE, Yabsley MJ. Experimental infection of two South American reservoirs with four distinct strains of *Trypanosoma cruzi*. Parasitology. 2009b; 137: 959-966.
- O'Connor, O., Bosseno, M.F., Barnabé, C., Douzery, E.J.P., Benière, S.F., 2007. Genetic clustering of *Trypanosoma cruzi* I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7, 587-593.
- López-Cancino SA, Tun-Ku E, Cruz-Félix HK, Ibarra-Cerdeña CN, Izeta-Alberdi A, Pech-May A, et al. Landscape ecology of *Trypanosoma cruzi* in the southern Yucatan Peninsula. Acta Trop. 2015; 51: 58-72.
- Barrera-Pérez M, Rodríguez-Félix ME, Guzmán-Marín E, Zavala-Velázquez J. Enfermedad de Chagas en el estado de Yucatán. Revisión de casos clínicos en fase aguda de 1970-1989. Revista Biomédica. 1990; 1: 185-195.

- 47. Sosa-Estani S, Gamboa-Leon MR., Del Cid-Lemus J, Althabe F, Alger J, Almendares O. Use of a rapid test on umbilical cord blood to screem for *Trypanosoma cruzi* infection in pregnant women in Argentina, Bolivia, Honduras and México. Am. J. Trop. Med. Hyg. 2008; 79: 755-759.
- Gamboa-León R, Ramirez-Gonzalez C, Pacheco-Tucuch FS, O'Shea M, Rosecrans K, Pippitt J. Seroprevalence of *Try*panosoma cruzi among mothers and children in rural Mayan communities and associated reproductive outcomes. Am.
- 49. J. Trop. Med. Hyg. 2014; 91: 348-53.
 Wiseman GL, Hendrickson GO. Notes on the life history and ecology of the opossum in Southeast Iowa. J. Mamm. 1950; 31: 331-336.
- 50. Long CA, Copes FA. Note on the rate of dispersion of the opossum in Wisconsin. Am. Midl. Nat. 1968; 80: 283-284.
- 51.Gehrt SD, Clark DE, Fritzell EK. Population dynamics and ecology of Virginia opossum in southern Texas. Southwest. Nat. 1997; 42: 170-176.

